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RESEARCH 
Our group specializes in integrated omics and 
clinical data science. We use this expertise to 
study human variation, and develop molecular 
insights into disease risk prediction, surveillance 
and intervention. Such an approach is highly 
useful in targeting complex diseases like obesity 
and mental illness that are currently affecting 
millions across the globe. Our projects cover 
molecular phenotyping of chronic diseases in 
different stages of life-course (pediatric to adults 
to elderly), with a special focus on Asian populations as they are underrepresented across many 
biomedical databases, thereby limiting the potential of precision medicine in nearly 60% of the global 
population. We work in collaboration with eminent Singaporean cohorts (GUSTO, S-PRESTO, ATTRaCT 
& PRISM), health clusters, public sector and national platforms (eg. National Precision Medicine SG10K-
Health study) to enhance the translational potential of our findings. In addition to the local research 
landscape, we work closely with the R&D of top nutrition and probiotics companies.  
Combining our learnings from omics and clinical data science, we have been using the multi-
dimensional data to develop mobile applications that can enhance personalized healthcare experience. 
These apps can be powered by next generation diagnostic tests developed through precision medicine 
research and electronic health records to provide a holistic and an up-to-date assessment of an 
individual’s health journey. These tools can not only provide an actionable intervention roadmap for 
clinicians but can also increase the scientific literacy of individuals to make better health choices. 
Beyond health apps, our experience in multi-omics data analytics has led to development of open-
source analytics tools (eg. Gene Environment Methylation tool - GEM), cell type reference panels for 
infant epigenetic studies, and omics databases such as iMOM-db and iDAD_db that cover molecular 
phenotypes of ethnic variation (eQTLs and meQTLs) and diet-exposure (sperm sncRNA). Link to Karnani 
lab tools, databases and resources -  https://karnanilab.com 
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PRINCIPAL INVESTIGATOR’S BIOGRAPHY 
Dr. Karnani is a molecular epidemiologist and clinical data scientist with 20 years of experience working 
with academia, industry and national platforms. She started her research career at University of 
Virginia, USA, where she contributed to the first functional annotation draft of human genome 
(ENCODE consortium). She moved to Singapore in 2013 to join A* STAR's Singapore Institute for Clinical 
Sciences (SICS). As the Systems Biology lead at SICS, she developed the multi-omics roadmap for 
Singapore's National Birth (GUSTO) and Pre-conception (S-PRESTO) cohorts and identified biomarkers 
of metabolic and mental health adversities in expecting mothers and their offspring. These findings 
have been patented and licensed by prominent nutrition industries and being translated into future 
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1. Early Life: Ethnic variation
Infant genotype (N=1105) Infant epigenome (DNA methylation)

(Cord tissue N=1000)

Chinese  Malay   Indian

Breastfeeding status and infant gut microbiota

Data for breastfeeding status at 3 months were
available for 105 of the 106 infants. Of these, 16
infants were breastfed only, 33 were mixed fed
with breastmilk and formula milk, and the remain-
ing 56 were fed with formula only. After adjusting

for ethnicity and delivery mode, breastfeeding sta-
tus had a significant impact on the gut microbiota
at 3M (Figure 2d and Figure S3). Among the 16
OTUs associated with breastfeeding status at
3M (Figure 4, Table S5), 7 OTUs had higher
abundance in the breastmilk only group, 3 in the

Figure 2. Effects of ethnicity, delivery mode, breastfeeding status and maternal education on the infant gut microbiota over time.
A. Canonical correspondence analysis (CCA) ordination biplots illustrating the individual effects of ethnicity, delivery mode,
breastfeeding status and maternal education on the variation of infant gut microbiota at four time points (3M, 6M, 12M, and
24M) without adjustment for covariates. B-E. Partial CCA ordination biplots illustrating the independent effects of ethnicity (b),
delivery mode (c), breastfeeding status (d) and maternal education (e) on infant gut microbiota after adjusting for the covariates.
B-E: At 3M, ethnicity, delivery mode, and breastfeeding status were all used as covariates and adjusted mutually; From 6 M to 24 M,
only ethnicity and delivery mode were regarded as covariates and adjusted mutually. The significance of the effects of the
environmental variable was tested using the Monte-Carlo Permutation Procedure (MCPP) on each environmental variable.
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Ethnic diversity in infant gut microbiota is apparent before 
the introduction of complementary diets 

Xu, Karnani Gut Microbes 2020

Infant Gut microbiome (N=111, 3months)

Chinese  Malay   Indian

Xu, Karnani Gut Microbes 2020 Hong, Tan, Lim et al. HMG 2022, under revision

Teh et al Genome Res.,2014



1. Early Life: Lipids and Obesity risk

92% same 
trend

12% same 
trend

Mir et al. BioRxiv 2021, 
BMC Medicine under revision 2022



1. Early Life: Factors influencing acquisition of infant gut microbiome

Endangered infant 
gut microbes and 
immune health  –

SIGMA study

Gut microbes and 
food allergy

IAF-ICP and Nestle 
funds

Microbiome: mother-gut, vagina, and infant-gut
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(Figure 2b-e and Table S2). Longitudinally, the
independent effects of breastfeeding status, mode
of delivery and ethnicity on gut microbiota com-
position lasted for 3, 6 and 12 months, respectively
(Table S2).

In alpha-diversity analysis, only the mode of
delivery showed a significant effect on the
Shannon diversity index at 3M, indicating that
infants delivered by lower segment cesarean sec-
tion (LSCS) had a microbiota that was significantly
more diverse. This difference in diversity stayed
significant even after adjusting for ethnicity and
breastfeeding status (Table S3).

Delivery mode and infant gut microbiota

Among the 106 infants studied for mode of delivery
analysis, 66 were delivered vaginally and the remain-
ing 40 were delivered by LSCS. After adjusting for the
effects of ethnicity and breastfeeding status, infants

delivered by LSCS harbored a gut microbiota distinct
to that of vaginally delivered infants. These differences
were primarily observed at 3 and 6M of age
(Figure 2c). Using partial CCA at these two-time
points, we identified 86 and 80 OTUs differentiating
the gut microbiota of LSCS vs. the vaginally delivered
infants (Figure S2). Among them, 17 OTUs showed
a differential longitudinal trend (Figure 3, Table S4).
Twelve of these OTUs had higher abundance, while
the remaining five had a lower abundance in the
vaginally delivered infants (Figure 3). Among the 12
higher abundance OTUs, 8 belonged to Bacteroides, 2
to Parabacteroides, and 1 each to Bifidobacterium and
the Bacteroidales S24-7 group. Notably, 8 OTUs from
Bacteroides were consecutively higher in the gut of
vaginally delivered infants at 3M and 6M. The five
OTUs with higher abundances in the LSCS group
belonged to Hungatella, Clostridium sensu stricto 1,
Erysipelotrichaceae Incertae Sedis, Erysipelato
clostridium, and Ruminiclostridium 5, respectively.

Figure 1. Developmental trajectory of infant gut microbiota from 3 to 24M. A. Change in α-diversity of gut microbiota over time as indicated
by the Shannon diversity index. Data are shown as mean ± 95% confidence interval. B. Principal coordinate analysis (PCoA) of gut microbiota
based on the Bray-Curtis dissimilarity distance over time. C. Clustering of gut microbiota based on distances between different time points
using MANOVA test with Bray-Curtis distance-based PCoA scores (accounting for 80% of total variations).
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Breastfeeding status and infant gut microbiota

Data for breastfeeding status at 3 months were
available for 105 of the 106 infants. Of these, 16
infants were breastfed only, 33 were mixed fed
with breastmilk and formula milk, and the remain-
ing 56 were fed with formula only. After adjusting

for ethnicity and delivery mode, breastfeeding sta-
tus had a significant impact on the gut microbiota
at 3M (Figure 2d and Figure S3). Among the 16
OTUs associated with breastfeeding status at
3M (Figure 4, Table S5), 7 OTUs had higher
abundance in the breastmilk only group, 3 in the

Figure 2. Effects of ethnicity, delivery mode, breastfeeding status and maternal education on the infant gut microbiota over time.
A. Canonical correspondence analysis (CCA) ordination biplots illustrating the individual effects of ethnicity, delivery mode,
breastfeeding status and maternal education on the variation of infant gut microbiota at four time points (3M, 6M, 12M, and
24M) without adjustment for covariates. B-E. Partial CCA ordination biplots illustrating the independent effects of ethnicity (b),
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environmental variable was tested using the Monte-Carlo Permutation Procedure (MCPP) on each environmental variable.
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Implication of gut microbiota in the association between infant 
antibiotic exposure and childhood obesity and adiposity 
accumulation

Ling-Wei Chen, PhD1,2,*, Jia Xu, PhD3,*, Shu E Soh, PhD1,3, Izzuddin M. Aris, PhD3,4,5, Mya-
Thway Tint, PhD4, Peter D. Gluckman, FRS3,6, Kok Hian Tan, FRCOG7,8, Lynette Pei-Chi 
Shek, FAAAI1, Yap-Seng Chong, MD3,4, Fabian Yap, FRCPCH8,9, Keith M. Godfrey, PhD10, 
Jack A Gilbert, PhD11, Neerja Karnani, PhD3,†, Yung Seng Lee, PhD, FRCPCH1,3,12,†

1Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 
Singapore 2HRB Centre for Diet and Health Research, School of Public Health, Physiotherapy, 
and Sports Science, University College Dublin, Dublin, Republic of Ireland 3Singapore Institute for 
Clinical Sciences, Agency for Science, Technology and Research, Singapore 4Department of 
Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 
Singapore 5Division of Chronic Disease Research Across the Lifecourse, Department of 
Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, 
MA 6Liggins Institute, University of Auckland, New Zealand 7Department of Maternal Fetal 
Medicine, KK Women’s and Children’s Hospital, Singapore 8Duke-National University of 
Singapore Graduate Medical School, Singapore 9Department of Pediatric Endocrinology, KK 
Women’s and Children’s Hospital, Singapore 10MRC Lifecourse Epidemiology Unit & NIHR 
Southampton Biomedical Research Centre, University of Southampton & University Hospital 
Southampton NHS Foundation Trust, UK 11Department of Pediatrics & Scripps Institution of 
Oceanography, University of California San Diego, CA 92093, USA 12Khoo Teck Puat- National 
University Children’s Medical Institute, National University Health System, Singapore

Abstract
Background—In animal studies early life antibiotic exposure causes metabolic abnormalities 
including obesity through microbiota disruption, but evidence from human studies is scarce. We 
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2. Women’s Health
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Integrative Multi-Omics database (iMOMdb)

Genomics
Epigenomics
Transcriptomics

iMOMdb

Ethnicity-specific 
hotspot genes

Ethnicity

� 28.0% of all SNPs 
FST > 0.05

� 30,350 genes

� 15.9% of all CpGs
FDR < 0.05

� 14,149 genes

� 27.8% of all RNAs 
FDR <0.05

� 4,433 genes� 2,561 genes with at 
least 1 SNP + CpG + RNA 
sig. assoc with ethnicity

7

Integrative Multi-Omics database (iMOMdb)

Genomics
Epigenomics
Transcriptomics

iMOMdb

Ethnicity-specific 
hotspot genes

Ethnicity

� 28.0% of all SNPs 
FST > 0.05

� 30,350 genes

� 15.9% of all CpGs
FDR < 0.05

� 14,149 genes

� 27.8% of all RNAs 
FDR <0.05

� 4,433 genes� 2,561 genes with at 
least 1 SNP + CpG + RNA 
sig. assoc with ethnicity

3

Growing Up in Singapore Towards Healthy Outcomes (GUSTO)

.. launched to specifically look into what health problems Singaporeans face, 
especially from pregnancy to infancy, as well as adulthood. 

- gusto.sg

Genomics
Epigenomics
Transcriptomics

iMOMdb

Oral Microbiome

M
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Integrative Multi-Omics database (iMOMdb)

Data repository containing high-resolution 
genotyping, DNA methylation, and transcriptome profiling

- imomdb.karnanilab.com/imomdb

Genomics
Epigenomics
Transcriptomics

iMOMdb

Overview
• Genotype (1079) Æ 629,493 + 6,978,879 SNPs 

• DNA Methylation (915) Æ 422,788 CpGs

• RNA (238) Æ 15,937 transcripts

• 1000Genomes • Epigenome 
Roadmap

• Genotype Tissue 
Expression Project 
(GTEx)
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Integrative Multi-Omics database (iMOMdb)

imomdb.karnanilab.com/imomdb

Genomics
Epigenomics
Transcriptomics

iMOMdb

1. Browse, search, visualize, download data

2. Multi-omics platforms: genotype, DNA methylation, RNA 

transcription

3. Ethnicity QTL, meGene, eGene annotations

11

Integrative Multi-Omics database (iMOMdb)

imomdb.karnanilab.com/imomdb

Hong, Tan, Lim et al. HMG 2022, under revision
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Integrative Multi-Omics database (iMOMdb)

¾Ethnicity QTL hotspots
¾ 395 genes

meGene eGeneEthnicity-specific 
hotspot gene

9

Integrative Multi-Omics database (iMOMdb)

¾Ethnicity QTL hotspot top GSEA 

• Antenatal maternal plasma 
(N=752)

• Maternal-facing placenta 
(N=1042)

Lipidomics (LC-MS/MS)

� 83.3% of lipids 
detected sig. 
assoc. with 
ethnicity

� 74.5% of lipids 
detected sig. 
assoc. with 
ethnicity
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Abstract

Objective: Maternal glycemic dysregulation during pregnancy increases the risk of adverse health
outcomes in her offspring, a risk thought to be linearly related to maternal hyperglycemia. It is
hypothesized that changes in offspring DNA methylation (DNAm) underline these associations.

Research design and methods: To address this hypothesis, we conducted fixed-effects meta-
analyses of epigenome-wide association study (EWAS) results from eight birth cohorts
investigating relationships between cord blood DNAm and fetal exposure to maternal glucose
(Nmaximum = 3,503), insulin (Nmaximum = 2,062), and area under the curve of glucose (AUCgluc)
following oral glucose tolerance tests (Nmaximum = 1,505). We performed lookup analyses for
identified cytosine-guanine dinucleotides (CpGs) in independent observational cohorts to examine
associations between DNAm and cardiometabolic traits as well as tissue-specific gene expression.

Results: Greater maternal AUCgluc was associated with lower cord blood DNAm at neighboring
CpGs cg26974062 (β [SE] -0.013 [2.1 × 10-3], P value corrected for false discovery rate [PFDR] =
5.1 × 10-3) and cg02988288 (β [SE]-0.013 [2.3 × 10-3], PFDR = 0.031) in TXNIP. These
associations were attenuated in women with GDM. Lower blood DNAm at these two CpGs near
TXNIP was associated with multiple metabolic traits later in life, including type 2 diabetes. TXNIP
DNAm in liver biopsies was associated with hepatic expression of TXNIP. We observed little
evidence of associations between either maternal glucose or insulin and cord blood DNAm.

Conclusions: Maternal hyperglycemia, as reflected by AUCgluc, was associated with lower cord
blood DNAm at TXNIP. Associations between DNAm at these CpGs and metabolic traits in
subsequent lookup analyses suggest that these may be candidate loci to investigate in future
causal and mediation analyses.

Figures

Figure 1 Overview of
findings at TXNIP…
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